If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-14n-18=0
a = 2; b = -14; c = -18;
Δ = b2-4ac
Δ = -142-4·2·(-18)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{85}}{2*2}=\frac{14-2\sqrt{85}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{85}}{2*2}=\frac{14+2\sqrt{85}}{4} $
| -6x+8=21+7x | | -2x^2+20x-48=−2x2+20x−48= | | 13/x=39/9 | | 2z-z-z+4z=12 | | 7x+5=3x+-23 | | k-3/2=-4 | | 275=4x+75 | | 18t+t+t+t-19t-1=1 | | -4.25m+7+6.75m-3=26 | | 4/7x+4/7=4/7 | | x*2/3=14 | | -4.25m+7+6.675m-3=26 | | m/4+6=9 | | 6a+10=2a | | -15y+13y-y-20=-11 | | -6v+3(v+3)=39 | | 5n^2+50n+125=0 | | d÷11+21=35 | | 3/2x+3/8=12 | | 16c-15c+12=1 | | 8r^2-56r+80=0 | | 2/x+7=12 | | x-60=12/5 | | 5(w+1)=10 | | (2q-1)/4=(3q+5)/8) | | 7/6x=720 | | 5s+-7s-2=-20 | | 6+2x+4(x-5)=19 | | 5(-6+7x)=110 | | 9/2=h | | 2n^2+18n+28=0 | | x+787=126 |